

Intuitive Dialogue Flows Design for
Conversational Interfaces

Stefano Valtolina
Department of Computer Science
Università degli Studi di Milano
Via Celoria, 18 Milano, Italy
valtolin@di.unimi.it

Lorenzo Neri
Department of Computer Science
Università degli Studi di Milano
Via Celoria, 18 Milano, Italy
lorenzo.neri@studenti.unimi.it

ABSTRACT1
Nowadays, new technologies are taking place for enabling conversational interactions between
users and bots. Experts in mobility, environment, energy, culture, e-health, weather, etc., are the
only ones who well-know the specific domain in which the bot will act. However, the design and
implementation of the interactive flow of dialogue cannot be properly defined by them because
deep programming skills are needed. Starting from this consideration, the paper proposes a
preliminary system that offers to domain experts the possibility to design a flow of dialogue
without getting lost in technicalities. Using a visual language, the domain expert can specify
intents, actions, entities and parameters at the base of the flow of dialogue on which the bot will
be created. Then, our engine automatically translates in a bot complaint with the DialogFlow
technology.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
CHI’19 Extended Abstracts, May 4-9, 2019, Glasgow, Scotland, UK.
© 2019 Copyright is held by the author/owner(s).
ACM ISBN 978-1-4503-5971-9/19/05.
DOI: https://doi.org/10.1145/3290607.XXXXXXX

KEYWORDS
Chatbots; Conversational interfaces; Design
trade-off; User inclusion; Design strategy.

INTRODUCTION
User-Centred Design (UCD) is a design strategy that aims at satisfying end-users' needs and
desires through a usable interface and an effective navigational experience. UCD strategy relies on
a combination of research and user experience (UX) design activities. In this case, UX deals with
the specific experience users have with the products they have to use.

The design of a web-based interactive application can put the user at the centre of the project,
not only improves her/his experience but also reduces costs. A successful system avoids any future
interventions addressed to meet needs that can arise after its actual use. In an attempt to make the
human-computer interaction more efficient, designers continuously try different approaches as in
the case of tools like Amazon Echo and Alexa, Google Home and Siri, where new interaction
strategies are proposed based on the dialogue between users and applications by simply using their
voice.

Even if UCD has always focused on designing usable GUIs (Graphical User Interfaces) and UX
has been closely related to the world of visual perception, the design of conversational interfaces
requires to focus the attention on the dialogue and to find in the linguistics, pragmatics and
semantics the scope of action as the graphical interfaces find it in the world of vision and semiotics
[1]. Designing a conversational interface without understanding how humans converse and talk, it
is equivalent to build a visual user interface without any basis of visual perception.

From a technical point of view, current conversational interfaces allow users to speak or to chat
with bots using voice (voicebot) or text (chatbot) [2] [3].

These conversational interfaces lack or provide few visual elements (e.g. buttons, slides, pop-
down menus) and we have to rely on the dialogue to express states and processes or to navigate
the system. For this reason, the interaction is usually a linear flow or a flow with few ramifications.
Today several domains can benefit from the use of voice or chatbots: e-commerce, health-care
assistants, customer/citizen service systems, or IoT device management. In these contexts, bots can
provide a direct and simple entry point for the user requiring information or suggestions for
selecting a product or activating a device. The flow of dialogue is designed with applications called
conversational design editors with which designers specify the way the bot has to react. The bot
engine exploits this flow of the dialogue and the related retrieving strategies for accessing
information or for activating devices.

The design of such flows is typically done by ICT experts who have the required technical skills
to develop the dialogue and the related algorithm around which the bot will be developed. By
engaging domain experts, the quality of the dialogue will be improved because they have the
necessary experience and knowledge to highlight real and effective dialogues. However, at the
current stage, they need to be supported by ICT experts and together they have to develop the
flows.

This paper aims at presenting a preliminary study about the design of a conversation interface
editor that supports non-technical domain experts in creating a dialogue flow and automatically
generate the related bot without the support of ICT experts.

In details, suppose that experts in public transportation and urban mobility need to create a bot
to help citizen to reach a specific location in the city. The bot leads the users in conversion asking
her/him to choose different transportation strategies. For example, it could suggest taking the bus
but getting down at a specific stop to walk a bit, or it could suggest parking the car in a specific
place and to use public transportation instead of the private one. Recommendations that the bot
has to provide by taking into account the weather condition or eventually the concomitant
presence of major events in the city. The dialogue to design is not a simple direct flow of
conversation but need to take into account the user’s answer and the information the bot needs to
retrieve from external APIs. APIs to use to understand the weather conditions or the presence of
major events in the city on the given date.

In the first section, we describe how our contribution stems from an End-User Development
(EUD) definition. We present the EUD as a design method able to provide domain experts with
unwittingly developing strategies to generate personalized flows of dialogues. The second section
describes the conversational interface editor and the technical details that needed to develop a bot
on Dialogflow. Section 3 presents the visual language used to support domain experts to create
flows and to automatically translate them in real bots without writing any line of code. Finally, the
last section tracks some conclusions and future works.

EUD AND CONVERSATIONAL INTERFACES (CI)
The definition of end-user interfaces has experienced deep changes in the last decade. However,
some seminal works in the consolidated EUD scientific literature still hold and are those that see
the end-user as someone interested in using digital devices just for the sake of it and not with the
idea of becoming expert in the technology itself (e.g. [4], [5]). Also, the definition of EUD given in
[6] still sounds valid to describe the phenomenon: “a set of methods, techniques, and tools that allow
users of software systems, who are acting as non-professional software developers, at some point to
create, modify or extend a software artefact”.

From an organizational point of view, end users are not necessarily experts in computer science,
but in the domains, they work in. Nardi’s definition given in [7] states that the end-user is “the
person who does not want to turn a task into a programming problem, who would rather follow a
lengthy but well-known set of procedures to get the job done”. With the large diffusion of virtual
agents, conversation interfaces are becoming one of the most adopted interaction paradigms in
which information and services are seamlessly available by using a natural interaction such as the
dialogue. Brancheau and Brown [8] confined the end-users to a space that is somewhere “outside
the information system department”. The idea is to confine end-users at the end of the design and
the development processes and to put distance, as suggested by Cypher [9], between them.

This approach does not reflect the current requirements that the design of conversational
interfaces need to deal with. Conversational interface design tools should provide end-users with
resources that support them in the creation of a bot. In detail, end-user are the domain experts
(experts in mobility, environment, energy, culture, e-health, weather, etc.,) who have the expertise
to design an effective dialogue because they well-know the specific domain in which the bot will
act.

CI EDITOR FOR DOMAIN EXPERTS
We analyzed the most diffused applications for supporting users in designing voice or chatbots
that include: Botsify (botsify.com), Chatfuel (chatfuel.com), Chatbot.com (www.chatbot.com),
ChatScript (github.com/ChatScript/), IBM Watson Conversation (www.ibm.com/cloud/watson-
assistant), ManyChat (manychat.com), Rasa (rasa.com), Recast.ai (cai.tools.sap/), Wit.ai (wit.ai/).

All these solutions suffer from the same common limitations. In some cases, they allow the user
to design single flows with no possibility to create ramifications in the dialogue. Other solutions,
like Chatfuel, do not offer the possibility to query external APIs that can be used by the bot to
provide further information required to complete the conversation (about the weather, the
availability of parking, public transportation, information about a product or service...). Tools like
Chatfuel, Chatbot.com, Wit.ai offer the possibility to create bots for only specific platforms such as
Facebook or Messenger. However, several of these solutions require the designer to know a specific
programming language and technicalities for creating effective and intelligent bots. To overcome
these problems, our proposal aims at providing domain experts with a graphical editor for the
design of a bot by using visual elements and for translating it automatically in an effective bot. The
design environment is based on Draw.io (app.diagrams.net/).

Draw.io is a web-based open-source technology that allows you to build diagrams in a very
simple matter. The final bot is implemented in DialogFlow (cloud.google.com/dialogflow/docs).
DialogFlow is a natural language processing (NLP) platform provided by Google corporation that
can be used to build conversational applications and experiences on multiple platforms (e.g.
FaceBook, Messenger) or devices (e.g. Google Home). Developers are supported by tools to enhance
their app’s interaction features through AI-powered text and voice discussions. By using
Dialogflow, developers can focus on other relevant parts of the creative process while the platform
handles the standard protocols and functionalities to implement the bot. Dialogflow features an in-
line editor so that developers can write the code directly from the console. In this platform, a
developer has to specify a set of intents that are used to define how to map user’s input to a
corresponding bot’s response. For each bot, the developer defines many intents that when
combined generate a complete conversation. A basic intent contains the components reported in
Table 1. As depicted in Fig. 1, every intent has a built-in response handler that can return responses
after the intent is matched.

https://chatfuel.com/
http://www.chatbot.com/
https://github.com/ChatScript/ChatScript/
http://www.ibm.com/cloud/watson-assistant
http://www.ibm.com/cloud/watson-assistant
https://wit.ai/
https://app.diagrams.net/
https://cloud.google.com/dialogflow/docs

 When the developer implements the intent, she/he has to establish which parameters to use for
extracting useful information from the end-user expression, like a time or location for the desired
weather forecast. This extracted data is important for the bot to perform a query for the end-user.
When the developer wishes to create an external interaction (e.g. access a database or external API)
she/he needs to create a fulfillment to process the intent first, and then returns a more intelligent
or useful response. A fulfillment is a custom logic written in JavaScript that the developer
implements as a webhook to use for handling an external interaction, processing them, and
returning responses. Moreover, the developer has to specify the contexts. A context represents the
current state of a user's request and allows the bot to carry information from one intent to another.
The developer can use combinations of input and output contexts to control the conversational
path the user takes through the dialogue. Finally, events allow the developer to invoke intents
based on something that has happened instead of what a user communicates.

Dialogflow supports events from several platforms (like Google Assistant, Slack, and more) based
on actions users take on those platforms. Moreover, a developer can also create her/his custom
events that can be triggered via fulfillment or the proper API. As depicted in Fig. 2, the developer
can design a conversational flow that directly interacts with Dialogflow API or external
API/database to send end-user expressions and receive intent matches.

DESIGNING CONVERSATIONAL FLOWS IN DRAW.IO
Draw.io offers widgets to create graphs such as the flowchart depicted in Fig. 3. These widgets can
be used to visualize the steps, decisions and the interactions needed to support the dialogue with
the bot to implement. In our work, we have considered some Draw.io widgets for the graphical
specification of the intents, external interaction, fulfillments, and contexts. By their composition, a
graph is obtained that specifies the interaction in a specific context of use. The resulting graph can
be serialized in an XML document which is the input of our engine that translates the graph in a
proper bot written in DialogFlow. The engine is based on NodeJS that extracts the information from
the XML graph created with Draw.io, transforms it in a JSON payload and at the end calls the
DialogFlow API to create the proper bot. Once the engine has parsed the XML file, it starts to
create a JSON object for each intent, then a JavaScript file for each invocation to external APIs.
Then, the engine translates the flow of dialogue in a hierarchical JSON object following the arrows
designed by the expert and finally, it calls the Dialogflow API to bring to life the bot.

In our strategy, in Draw.io, we ask domain experts to design the graph to make clear to the
engine which intents, actions and external API calls to parse. For each intent, the user has to drag
and drop on the Draw.io canvas, a rectangle, which a proper name (see Fig. 4). In the first section
(Fig. 4A), she/he to specify a set of training phrases to use to start the dialogue. By using the
different colours the user indicates the parameters the bot will use to understand the input
phrases. The parameters are then written in section two (Fig. 4B). If the training phrases contain
more the one parameter, the expert has to use different colours to highlight them and separate the
paraments by using the symbol §. Finally, in the third section (Fig. 4C), the expert has to indicate
the bot reply by using the parameters specified above.

Figure 1: Information to specify for creating an intent.
For each agent, she/he to define many training phrases
by using which the bot will create the final answer
(from DialogFlow - cloud.google.com/dialogflow/docs).

Figure2: The diagram shows the processing flow when
the bot interacts with the API. (from DialogFlow
documentation).

Table 1: Basic components in DialoFlow for creating a
bot

Training
phrases

Samples of the phrases that the users can
say,

Action and
Parameter
s

Training phrases can be annotated with
entities or categories of data that the
developer wishes Dialogflow to match. They
have the purpose of improving the intent's
language model.

Responses Samples of the text, speech, or visual
responses to provide to the users, which
usually prompts users in a way that lets
them know what to say next or that the
conversation is ending up,

https://cloud.google.com/dialogflow/docs

 The actions, the contexts and the right flow of the dialogue are specified connecting the
rectangles with arrows as depicted in Fig. 4. The parameters can be used not only to provide a
direct answer to the user but also to invoke external APIs. In Fig. 4(D) the expert has specified as
the second bot reply is created by invoking an API named ApiTrains.

By dragging and dropping a curved rectangle (Fig. 4 (E)), the expert indicates the address of the
API and how the bot uses it for replying. By using the coloured parameters and the dot notation
adopted for specifying the name of the section from which the parameters are established, the
expert composes the final answer. In details, the bot in Fig. 4 will be activated by the final user for
asking information about a trip in train. As first intent, she/he will say from which train station
she/he will start. In case, she/he can also present her/himself. The bot will reply composing the
answer by using the paraments: name and starting. Then, the bot will ask to indicate the station of
destination. The final answer will be created by calling an external API named ApiTrains. By using
this API, the bot will be able to indicate the first train available from the starting station to the
destination as requested by the user.

CONCLUSIONS

In this paper, we have presented a preliminary system that aims at supporting domain experts in
designing flows of dialogue that are automatically translated in a working bot on DialoFlow
without writing a line of code. At the current stage, Draw.io is used to design the graph but no
debug controls are implemented to help experts during the design process. For example, we could
devise a strategy to indicate when the experts are not using the right colours or forget to complete
a section in an intent rectangle. Moreover, future works could aim at formalizing the visual
language to specify the right grammar to use for creating a flow of dialogue.

REFERENCES

[1] Valtolina, S., Barricelli, B.R., Dittrich,Y. 2012. Participatory knowledge-management design: a semiotic approach, JVLC.

23 (2), 103–115
[2] Shawar, A., Atwell, E., & Roberts, A. 2005. Faqchat as in information retrieval system. In Human language technologies

as a challenge for computer science and linguistics (pp. 274-278)
[3] Braun, D., Hernandez-Mendez, A., Matthes, F., Langen, M.: Evaluating Natural Language Understanding Services for

Conversational Question Answering Systems. In: 18th Annual SIGdial Meeting on Discourse and Dialogue (2017)
[4] Costabile, M. F., Fogli, D., Mussio, P., Piccinno, A.: Visual Interactive Systems for End-User Development: a Model-

based Design Methodology. IEEE TSMCA, 37(6), pp. 1029--1046 (2007)
[5] Petre, M., Blackwell, A. F.: Children as Unwitting End-User Programmers. In: VL/HCC 2007, pp. 239-242
[6] Lieberman, H., Paternò, F., Klann, M., Wulf, V.: End-User Development: An Emerging Paradigm. In: End-User

Development, pp. 1--8). Springer (2006)
[7] Nardi, B.: A Small Matter of Programming. MIT Press (1993)
[8] Brancheau, J. C., Brown, C. V.: The Management of End-User Computing: Status and Direction. ACM Computing

Surveys, 25(5), pp. 437--482 (1993)
[9] Cypher, A.: Watch What I Do: Programming by Demonstration. The MIT Press (1993)

Figure 3: Example of a flow of dialogue in which the
domain expert has created two intents. For each intent,
she/he has specified the training phrases, the
parameters and the bot reply. In the second intent for
creating the final answer, the expert specifies to call an
external API.

Figure 2: An example of the graph the domain expert
can design to specify the flow of dialogue in Draw.io

